A simple proof of Ramanujan’s $\sb{1}\psi \sb{1}$ sum
نویسندگان
چکیده
منابع مشابه
A simple proof of Zariski's Lemma
Our aim in this very short note is to show that the proof of the following well-known fundamental lemma of Zariski follows from an argument similar to the proof of the fact that the rational field $mathbb{Q}$ is not a finitely generated $mathbb{Z}$-algebra.
متن کاملOn the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملA Simple Proof of The
We give elementary derivations of some classical summation formulae for bilateral (basic) hypergeometric series. In particular, we apply Gauß’ 2F1 summation and elementary series manipulations to give a simple proof of Dougall’s 2H2 summation. Similarly, we apply Rogers’ nonterminating 6φ5 summation and elementary series manipulations to give a simple proof of Bailey’s very-well-poised 6ψ6 summ...
متن کاملA simple geometric proof that comonotonic risks have the convex-largest sum
In the recent actuarial literature, several proofs have been given for the fact that if a random vector (X1,X2, . . . ,Xn) with given marginals has a comonotonic joint distribution, the sum X1 +X2 + · · · +Xn is the largest possible in convex order. In this note we give a lucid proof of this fact, based on a geometric interpretation of the support of the comonotonic distribution.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1977
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1977-0508183-7